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ABSTRACT

On the Statistics of Ambient Noise , Elizabeth M. Arase and

T. Arase. Hudson Laboratories of Columbia Universit y, Dobbs Fer ry ,

New York 10522. The statistics of ambient noise have been investi gated

previously for single receivers5A. H. Green , Bell Tel. Lab. Tech. Report

No. 10 , 1962).~ No studies have been made for ambient noise with arrays .

Data are presented for ambient noise measured with ar rays  with 30 to 60

elements. Amplitude samples of ambient noise were -take n at 30-msec

intervals. The period is long enoug h to ensure that successive samples

are independent. Sets of 2000 to 3000 points were ta ken. Noise statistics

were also taken with random addition of the elements . No significant dif-

ference was found for the statistics of the two cases. Distribution functions

and moments up to the fourth order we re computed and will be presented. ~~-

(Hudson Laboratories of Columbia University Informal Documentation No. 126.

This work was supported by the U. S. Office of Naval Research.)
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The statistics of ambient noise have previously been investigated

for single receivers in the frequency range to about 120 Hz. 1 No studies

have been made for ambient noise with ar rays , or for single receivers at

a higher frequency.  We have studied the statistics of ambient noise with

a large numbe r of receivers (from 30 to about 60), which formed an over-

spaced a r ray  in the frequency range 300 to 500 Hz , and was steered for RSR

arrival.

The large number of receivers were phased by measuring the arrival

time of the RSR downgoing arriva l from a distant pulsed source. The pulses

were short enough so that a particula r arriva l could be identified and strong

enough so tha t the si gnal was much larger than the noise.

The receiver signals were clipped , delayed , and added to form

beams . The correctness of the beams formed was partl y determined by

measuring the signal -to -noise ratio at the output of the beamformer for short

pulsed si gnals. For high signal-to-noise cases , the signa l power adds as

N2 where N is the number of elements , and the noise power adds as N

Consequently the output signal-to -noise should be proportional to N , as

may be seen from Fig. 1 to be the case for the results presented here.

After a best beam had been obta ined on pulsed signals , the source

was turned off and these same delays were used on ambient noise. Some

data were taken on tape for off-line processing in order to compare random

delays with a steered beam for the same sample of data . Onl y such records

were used , in which no nearfield source s were apparent, such as whale

noise , overhead ships , or rainstorms.

The amplitude output was recorded on a Visicorder , and a typical

portion of such a record is shown in Fig. 2. Samples of the f irs t  two sets

with steered and random delay, called he reafter sets I , II, III , and IV , were
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read at time intervals of 30 msec. A total of 2000 points was read for

each record , corresponding to a sample length of 1 miri. For the last set ,

called set X , dependent samples were taken at 1 and 3 msec after the first,

to determine the consistency of dependent sets. For each of these dependent

sets we took about 3000 sample point s , corresponding to a record le ngth

of 1.5 ruin.

Since the system is clipped , the distribution would be expected to

be binomial, if the unclipped distribution is Gaussian. However , for the

number of elements used , between 37 and 64 , the difference between the

two distributions is insignificant.

Figures 3 and 4 show the cumulative distribution as a function of

the deflection in cm as well as in volts for random delays and for a steered

array. The curve s are plotted on probability pape r , on which a normal

distribution appears as a straight line . Fi gure 5 shows the three depend ent

sets , which seem to vary as much from each othe r as the steered and random

sets do in the previous f igures.  Certainly, grossly, all of the distributions

have the features of a normal distribution. However , better tests have to

be underta ken to determine their normality. One method consists of com-

putation of the moments . Figure 6 shows the nth moment for r sample

points , where ~ is the mean of the sample. The coefficient of skewness

which is sometimes defined as y2
2 

, as for example by Pearson, 2

is zero for a normal distribution. The peakedness or kurtosis is equal to 3.

Figure 7 shows the computed value s of y2 and for the experimental

2 .distributions. Pearson has computed the confidence limits for y2 and

as function of the number of data points . The 99 percent confidence

interval for 2000 points is given at the bottom of the figure , and we see that

set IV and sets X and Y fall outside of these limits , as indicated by the .

-3-

~- 

~~~~~~~~~NP 3
~~~~ f Lr L - - _ _ _



The moments tests have the disadvantage that large amplitude

value s are heavily wei ghted . Quite often experimental distributions which

are normal in the central region have tails , and are rejected for this reason,

not always validly. One test for normality, which takes care of thi s objection,

is the Kolmogorov-Smirnov test , which can also be used to test for the

stationarity of our distribution. Figure 8 shows the equations for this test .

We find the maximum diffe rence between the theoretical distribution F(x)

based on the experimental value of the average value of x and the standard

deviation, and the experimental cumulative distribution S~ (x) . For this

to lie within the 99 percent confidence inte rval, the maximum diffe rence has

to be less than a constant a , which is dependent on the number of data

points . To test for stationarity between sets , the difference between the sets

in each interval has to be less than another constant. We f i rs t  test for normality

of each set. Figure 9 shows the experimental step function, the central line

which is the theoretical distribution with which the experimental distribution

is compared , and the 95 and 99 percent confidence limits .

The experimental distribution is always less than the confidence limits.

For the next few sets we shall only show the inset area enlarged , although

we also tested in the outer regions . Figures 10, 11, and 12 show sets II, III,

and IV. Of these sets , III and IV exceed the confidence interval. Set Ill had

previously been shown to be normal from the moments test. The equivalent

tests for sets X , Y , Z show that all of these sets exceed the 99 percent con-

fidence interval.

To test for stationarity of our sets , we divided each set into four

parts , obtaining subsets 1, 2, 3, and 4 with 500 points each for sets I, II, Ill ,

and IV. The individual sets again were tested for normality, and then for

Btationarity according to the Kolmogorov-Smirnov test. The maximum inter-set
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coefficients are given , and exceed the 99 percent limits in all but in set IV.

So in general , the distributions are nonstationa.ry. Thi s is more apparent

then in Green ’s work , since he worke d at lower frequencie s , where ambient

noise appears to be more stationary.

The last two fi gures (17 and 18) give a summary of the normality of

the small as well as the large sets . The R indicates the small as well as

the large sets which were rejected in the moments test or in the Kolmogorov-

Srnirnov test. The ‘majority of the small sets fall within the 99 percent con-

fidence interva l of normality. Tha t a large number d’i tota l sets is rejected

is probabl y due to the nonstationarity of the noise.

Further work for a sing le hydrop hone in thi s frequency range is

necessary to investigate the character of ambient noise.
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Fig. 1. Signal-to-noise ratio
as function of number of
elements . Fig. 2. Typical Visicorder record .
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